1. Gravitation

IMP Formulae:

1. Kepler's third law:

• $T^2 \alpha r^3$

Where, T = the period of revolution of a body,

r = the radius of orbit in which the body is revolving.

$$\left(\frac{\mathsf{T_1}}{\mathsf{T_2}}\right)^2 = \left(\frac{\mathsf{r_1}}{\mathsf{r_2}}\right)$$

Where T_1 , T_2 and r_1 , r_2 are periodic times and mean radii of the orbits of two planets around the Sun respectively.

2. Gravitational force between two bodies:

$$\mathbf{F} = \mathbf{G} \ \frac{m_{1m_2}}{r^2}$$

Where,

 m_1 and m_2 = masses of two bodies,

r = distance of separation between them,

G = universal gravitational constant

3. Universal gravitational constant:

$$\mathbf{G} = \frac{F r^2}{m_{1m_2}}$$

4. Acceleration due to gravity:

On the earth surface, $g = \frac{G M}{r^2}$

Where, M = mass of the earth, r = radius of the earth.

5. Weight of an object of mass m,

$$W = m g$$

6. Kinematical equations of motion:

i.
$$v = u + at$$

ii.
$$s = ut + \frac{1}{2} a t^2$$

iii.
$$v^2 = u^2 + 2as$$

For a freely falling body:

i.
$$v = g t$$

ii.
$$h = \frac{1}{2} g t^2$$

iii.
$$v^2 = 2gh$$

For a body thrown upwards:

i.
$$u = -gt$$

(negative sign indicates velocity is decreasing)

ii.
$$h = u t - \frac{1}{2} g t^2$$

iii.
$$u^2 = 2 g h$$

Where,

u = initial velocity,

v = final velocity,

g = acceleration due to gravity.

h = distance of the body from the surface of the earth

7. Potential energy of a body:

i. On the earth's surface,

$$P.E = - \frac{G M m}{R}$$

ii. At a height h from surface of earth,

$$P.E = - \frac{G M m}{R+h}$$

where,

m = mass of the body.

8. Escape velocity of a body (On the surface of the earth):

$$\mathbf{V}_{\rm esc} = \sqrt{2 \mathbf{g} \mathbf{R}} = \sqrt{\frac{2 \mathbf{G} \mathbf{M}}{R}}$$

Values to remember

- 1. Gravitational constant (G) = $6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$
- 2. Standard value of acceleration due to gravity (g) = 9.8 m/s^2
- 3. Mass of the earth = $6 \times 10^{24} \text{ kg}$
- 4. Radius of the earth = $6.4 \times 10^6 \text{ m}$

4. Effects of Electric Current

1. Potential difference:

$$V = I R$$

where,

I = Current,

R = Resistance.

2. Electrical power:

$$\mathbf{P} = \mathbf{V} \mathbf{I} = \frac{V^2}{R} = \mathbf{I}^2 \mathbf{R}$$

where,

V = Potential difference,

I = Current,

R = Resistance

3. Heat produced in resistor due to current:

$$\mathbf{H} = \mathbf{P} \mathbf{t} = \mathbf{V} \mathbf{I} \mathbf{t} = \mathbf{I}^2 \mathbf{R} \mathbf{t} = \frac{V^2 t}{R}$$

5. Heat

Formulae

- 1. % Relative humidity (for a given temperature)
 - $= \frac{\text{actual mass of water vapour content in the air in a given volume}}{\text{mass of vapour needed to make the air saturated in that volume}} \hspace{0.2cm} \times 100$
- 2. Heat change involved during transformation of state:

Heat change $= m \times L$

where,

m = mass of substance, L = Latent heat for substance.

3. Change in heat energy of the object when its temperature is changed:

$$Q = m \times c \times \Delta T$$

where, m = mass of object, c = specific heat of object, $\Delta T = change in temperature of object.$

4. Principle of heat exchange:

Heat energy lost by the hot object = Heat energy gained by the cold object

5. Measurement of specific heat by mixing method:

(Heat lost by hot object) = (Heat gained by calorimeter) + (Heat gained by water in calorimeter)

Values to remember

1. Melting point of ice = $0 \, ^{\circ}$ C

- 2. Boiling point of water = $100 \, ^{\circ}$ C
- 3. Latent heat of fusion / melting of ice: $L_{melt} = 80 \text{ cal/g}$
- 4. Latent heat of vaporisation of water: $L_{vap} = 540 \text{ cal/g}$
- 5. Specific heat of water: $c_w = 1 \text{ cal/g }^{\circ}C = 1 \text{ kcal/kg }^{\circ}C$

Physical Quantities	Units
Temperature	°C
Specific latent heat	SI: J/kg CGS: cal/g
Absolute humidity	kg/m ³
Heat	SI: J (joule) CGS: cal (calorie) Higher units: kcal
Specific heat	SI: J/kg °C CGS: cal/g °C

6. Refraction of Light

Formulae

1. Absolute refractive index:

$$\mathbf{n} = \frac{V_1}{V_2}$$

Where,

 V_1 = velocity of light in vacuum,

 V_2 = velocity of light in medium.

2. Refractive index:

i.
$${}^{1}n_{2} = \frac{V_{1}}{V_{2}}$$

ii.
$${}^{2}n_{1} = \frac{V_{2}}{V_{1}}$$

iii.
$${}^{1}n_{2} = \frac{1}{2_{n_{1}}}$$

Where,

 1 **n**₂ = refractive index of second medium with respect to first medium,

 ${}^{2}\mathbf{n}_{1}$ = refractive index of first medium with respect second medium.

 V_1 = velocity of light in first medium,

 V_2 = velocity of light in second medium.

3. Second law of refraction / Snell's law:

1
n₂ = $\frac{\sin i}{\sin r}$

Where,

 1 n₂ = refractive index of second medium with respect to first medium,

i = angle of incidence,

r = angle of refraction.

Values to remember

- 1. Velocity of light in air/vacuum = $3 \times 10^8 \text{ m/s}$
- 2. Refractive index of air = 1

7. Lenses

1. Lens formula:

$$\frac{1}{v} = \frac{1}{u} = \frac{1}{f}$$

Where,

v: Image distance,

u: Object distance,

f: Focal length of the lens.

2. Magnification of lens:

$$M = \frac{h_2}{h_1} = \frac{v}{u}$$

Where,

h₂: Height of the image,

h₁: Height of the object.

3. Power of lens in dioptre : $P = \frac{1}{f(m)}$

Where,

f: Focal length of lens taken in metre.

4. Power of combination of two lenses

$$P = \frac{1}{f} = \frac{1}{f_1} = \frac{1}{f_2}$$

Or
$$P = P_1 + P_2$$

Where,

f₁: Focal length of first lens,

f₂: Focal length of second lens,

P₁: Power of first lens,

P₂: Power of second lens.

10. Space Missions

Formulae

1. Critical velocity (tangential velocity):

$$\mathbf{V_c} = \sqrt{\frac{\mathbf{G} \mathbf{M}}{\mathbf{R} + \mathbf{h}}}$$

where,

G: Gravitational constant,

M: Mass of the earth, R: Radius of the earth,

h: Height of the satellite from surface of the earth.

2. Escape velocity:

$$V_{\rm esc} = \sqrt{\frac{2GM}{R}}$$

3. Time for one revolution for a satellite:

$$\mathbf{T} = \frac{2 \, \pi (R+h)}{V_c}$$

Values to remember

Physical quantity	Symbol	Value
Gravitational constant	G	$6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$
Mass of the earth	М	$6 \times 10^{24} \text{ kg}$
Radius of the earth	R	6.4×10^6 m OR 6400 km
Escape velocity from surface of the earth	V _{esc}	11.2 km/s

Prepared by:-

Dr. Pankaj W. Matte

Janata Vid. City br Ballarpur Dt. Chandrapur

www.mathsciencedears.com