Specimen Answers of Question Paper. 3

Standard 10 ${ }^{\text {th }}$ Mathematics Part I

Time : 2 Hours

Q. 1 (A)
(1) $\mathrm{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in I, q \neq 0\right\}$
(2) $|8|+|-3|=8+3=11$
(3) When $x=-1$,

$$
\begin{aligned}
x^{4}-x^{3}+5 & =(-1)^{4}-(-1)^{3}+5 \\
& =1-(-1)+5 \\
& =1+1+5=7
\end{aligned}
$$

(4) $x^{2}=16 \times 9$
$\therefore x=4 \times 3=12$
(5) $x+y=12$,
\therefore when $x=5$,
$5+y=12$
$\therefore y=12-5=7$
(6) From first of April to 31st of March.
(B)
(1) Mean $=\frac{1+3+2+2+4+1+2+2+1}{9}=\frac{18}{9}=2$

Acending order is $1,1,1,2,2,2,2,3,4$
The number at middle place is $2 . \quad \therefore$ Median $=2$
The number repeated maximum number of times is 2 .
\therefore the mode is 2 .
(2) (i) $a: b=7: 2$
$\therefore b: a=2: 7$ \qquad invertendo
(ii) $\frac{a}{b}=\frac{7}{2} \quad \therefore \frac{a+b}{b}=\frac{7+2}{2}=\frac{9}{2}$ \qquad
(3)

$$
\begin{align*}
& 3 x+y=14 \ldots \ldots \ldots .(1) \tag{1}\\
&+\quad x-y=2 \ldots \ldots \ldots .(2) \\
& \therefore \quad \begin{array}{ll}
x-\ldots \ldots \ldots . \operatorname{adding}(1) \text { and }(2)
\end{array}
\end{align*}
$$

$\therefore x=4$
substituting $x=4$ in equation (2)
$4-y=2$
$\therefore-y=2-4=-2$
$\therefore y=2$
Q. 2 (A)
(1) (B) $\frac{3}{2}, 2$
(2) (C) $\frac{n(n+1)}{2}$
(3) (A) Market value $>$ Face value
(4) (D) 2
(B)
(1) $\mathrm{S}=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}, \quad n(\mathrm{~S})=4$

If event A is getting a head on both coins.
$\mathrm{A}=\{\mathrm{HH}\}, n(\mathrm{~A})=1$
$\mathrm{P}(\mathrm{A})=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}=\frac{1}{4}$
(2)

Class	Class Mark $\left(x_{i}\right)$	Frequency f_{i}	$x_{i} f_{i}$
$0-20$	10	6	60
$20-40$	30	4	120
$40-60$	50	5	250
$60-80$	70	7	490
$80-100$	90	3	270
		25	1190

$$
\begin{aligned}
\text { Mean } & =\frac{\sum x_{i} f_{i}}{\sum f_{i}} \\
& =\frac{1190}{25} \\
& =47.6
\end{aligned}
$$

(3) $\alpha=4$ and $\beta=-12$

$$
\begin{gathered}
\therefore \alpha+\beta=4+(-12)=-8 \\
\quad \alpha \beta=4 \times(-12)=-48 \\
\\
x^{2}-(\alpha+\beta) x+\alpha \beta=0 \\
\\
x^{2}-(-8) x+(-48)=0 \\
\\
x^{2}+8 x-48=0
\end{gathered}
$$

Q. 3 (A)
(1) $n(\mathrm{~S})=20+40+15+25=100$
$n(\mathrm{C})=15$
$\mathrm{P}(\mathrm{C})=\frac{n(\mathrm{C})}{n(\mathrm{P})}=\frac{15}{100}=\frac{3}{20}$
(2) $\mathrm{S}_{n}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$

$$
\begin{aligned}
\therefore \mathrm{S}_{30} & =\frac{30}{2}[20+(30-1) \times 5] \\
& =15[20+145] \\
& =15 \times 165 \\
& =2475
\end{aligned}
$$

(3)

x	$\square 1$	-1
y	1	$\boxed{-5}$
(x, y)	$(1,1)$	$(-1,-5)$

(B)
(1) F. V. $=$ Rs. 100, M. V. = Rs. 150, Dividend $=12 \%$

Let rate of return $=x \%$
If Rs. 150 are invested, the returns are Rs. 12
$\therefore \frac{12}{150}=\frac{x}{100}$
$x=\frac{12 \times 100}{150}=8$
\therefore The rate of return is 8%.
(2) The A. P. is $3,8,13,18$,

Let the $n^{\text {th }}$ term of the A. P. be 148 .

$$
\begin{aligned}
& a=3, d=5 \text { and } t_{n}=148 \\
& t_{n}=a+(n-1) d
\end{aligned}
$$

$$
\begin{aligned}
& 148=3+(n-1) 5 \\
& \quad=3+5 n-5 \\
& \therefore 5 n=148+2=150 \\
& \therefore n=30 \\
& \therefore 30^{\text {th }} \text { term is } 148 .
\end{aligned}
$$

(3) $x+y=7$

$$
2 x-3 y=9
$$

$\therefore a_{1}=1, b_{1}=1, c_{1}=7$ and $a_{2}=2, b_{2}=-3, c_{2}=9$
Now, $\mathrm{D}=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|=\left|\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right|=-3-2=-5$
$\mathrm{D} x=\left|\begin{array}{ll}c_{1} & b_{1} \\ c_{2} & b_{2}\end{array}\right|=\left|\begin{array}{cc}7 & 1 \\ 9 & -3\end{array}\right|=-21-9=-30$
$\mathrm{D} y=\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right|=\left|\begin{array}{ll}1 & 7 \\ 2 & 9\end{array}\right|=9-14=-5$
$\therefore x=\frac{\mathrm{D} x}{\mathrm{D}}=\frac{-30}{-5}=6$ and $y=\frac{\mathrm{D} y}{\mathrm{D}}=\frac{-5}{-5}=1$
Q. 4
(1) α and β are the roots of $x^{2}-4 x-6=0$

$$
\begin{aligned}
& \therefore a=1, b=-4, c=-6 \\
& \alpha+\beta=\frac{-b}{a}=\frac{-(-4)}{1}=\frac{4}{1}=4 \\
& \begin{aligned}
\alpha \beta=\frac{c}{a} & =\frac{-6}{1}=-6 \\
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =(4)^{2}-2(-6) \\
& =16+12 \\
& =28 \\
\alpha^{3}+\beta^{3} & =(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta) \\
& =(4)^{3}-3(-6)(4) \\
& =64+72 \\
& =136
\end{aligned}
\end{aligned}
$$

(2) $t_{n}=a+(n-1) d$
$\therefore t_{3}=a+(3-1) d=a+2 d$
$t_{7}=a+(7-1) d=a+6 d$
$\therefore t_{3}+t_{7}=(a+2 d)+(a+6 d)=2 a+8 d$
$\therefore 2 a+8 d=6$
$\therefore a+4 d=3$
$t_{3} \times t_{7}=(a+2 d)(a+6 d)$ $=(a+4 d-2 d)(a+4 d+2 d)$ $=(3-2 d)(3+2 d)$ \qquad from (I)
$\therefore(3-2 d)(3+2 d)=8$
$\therefore 9-4 d^{2}=8$
$\therefore 4 d^{2}=1 \quad d^{2}=\frac{1}{4} \quad d=\frac{1}{2}$ or $d=-\frac{1}{2}$
Now, if $d=\frac{1}{2}$ If $d=-\frac{1}{2}$
$a+4 \times \frac{1}{2}=3$ \qquad from (I)
$a=1$

$$
\begin{aligned}
& a+4 \times\left(-\frac{1}{2}\right)=3 \\
& a=5
\end{aligned}
$$

.
\qquad
\therefore the first term of the A. P. is 1 and the common difference is $\frac{1}{2}$.
or, the first term of the A. P. is 5 and the common difference is $\frac{2}{2}$.
(3) The total number of students, $\mathrm{N}=500$.

For mathematics, $\theta=126$
No. of students showing
inclination toward Maths $=\frac{\theta}{360} \times \mathrm{N}=\frac{126}{360} \times 500=175$
Similarly,
No. of students showing
inclination towards Social science $=\frac{54}{360} \times 500=75$
No. of students showing
inclination towards Science $=\frac{72}{360} \times 500=100$
No. of students showing
inclination towards languages $=\frac{108}{360} \times 500=150$
Now, $150-100=50$
$\therefore 50$ more students show inclination towards languages than towards science
(4) Suppose, the units place digit of the two digit number is y and the tens place digit is x.
\therefore the number is $10 x+y$
\therefore the number obtained by reversing the digits is $10 y+x$
\therefore from the given conditions,
$(10 x+y)+(10 y+x)=121$
$\therefore 11 x+11 y=121 \quad \therefore x+y=11$
Also, $x=y+7$
$\therefore x-y=7$
\therefore Adding (I) and (II), $2 x=18 \quad x=9$
\therefore from (I) $a+y=11 \quad y=2$
\therefore the two digit number is 29 .

Q. 5

(1) The distance between Akola and Bhusawal is 168 km .

Suppose, average speed of passenger train is $x \mathrm{~km} / \mathrm{hr}$.
\therefore the average speed of express train is $(x+14) \mathrm{km} / \mathrm{hr}$.
\therefore the time required for passenger train $=\frac{168}{x}$ hours and the time required for express train $=\frac{168}{x+14}$ hours
\therefore from the given condition,

$$
\frac{168}{x}-\frac{168}{x+14}=1
$$

$\therefore \frac{168 x+168 \times 14-168 x}{x(x+14)}=1$
$\therefore x^{2}+14 x=168 \times 14$
$\therefore x^{2}+14 x-2352=0$
$\therefore x^{2}+56 x-42 x-2352=0$
$\therefore x(x+56)-42(x+56)=0$
$\therefore x(x+56)(x-42)=0$
$\therefore x+56=0$ or $x-42=0$
$\therefore x=-56$ or $x=42$
But speed is not negative

$$
x=42
$$

\therefore average speed of passenger train $=42 \mathrm{~km} / \mathrm{hr}$ and average speed of express train $=(42+14)=56 \mathrm{~km} / \mathrm{hr}$.
(2)

Class Mark	Classes of Marks	No. of students (Frequency)	Co-ordinates
325	$300-350$	25	$(325,25)$
375	$350-400$	35	$(375,35)$
425	$400-450$	45	$(425,45)$
475	$450-500$	40	$(475,40)$
525	$500-550$	32	$(525,32)$
575	$550-600$	20	$(575,20)$

Q. 6
(1) Let the number of blue balls be B , of red balls R and of white balls W . As per given information, $\mathrm{B}<\mathrm{R}<\mathrm{W}$.

Colour of ball \rightarrow	B	R	W		
Not as per information.					
	1	38	11		
	2	26	22		
	Not as per information.				
	3	14	33		
	4	2	44		Nossible as per information.
:---					

there are 3 blue, 14 red and 33 white balls in the bag.
Let the event that the ball is red be A.
$n(\mathrm{~A})=14$ and $n(\mathrm{~S})=50$
probability of a ball drawn is red $=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}$

$$
=\frac{14}{50}
$$

$$
=\frac{7}{25}
$$

(2) (i) The sale of dealer $\mathrm{A}=\frac{100}{5} \times 5000=1,00,000$ rupees
(ii) The purchase of dealer $B=\frac{100}{5} \times 4000=80,000$ rupees
(iii) \therefore Balance of CGST paid by $\mathrm{A}=\frac{1000}{2}=$ Rs. 500 and $\operatorname{SGST}=$ Rs. 500

Mathematics Part II STD 10th Question Paper No. 3 Answersheet

Q. 1 (A)
(1) $d(\mathrm{~A}, \mathrm{~B})=4-(-8)=4+8=12$
(2) $\angle \mathrm{RHG}=\angle \mathrm{DHP}$.(Opposite angles)
$=85^{\circ}$
$\angle \mathrm{HGS}=\angle \mathrm{DHP} \quad$. (Corresponding angles)
$=85^{\circ}$
(3) $\angle \mathrm{ACD}=\angle \mathrm{B}+\angle \mathrm{A}$ \qquad (theorem of remote interior angle)

$$
\begin{aligned}
& =40+70 \\
& =110^{\circ}
\end{aligned}
$$

(4) $\mathrm{WY}=2 \mathrm{OY}=2 \times 5=10 \mathrm{~cm}$ (Diagonals of parallelogram bisect each other)
(5) Point $\mathrm{A}(-3,2)$ is in second quadrant and point $\mathrm{B}(12,0)$ is on X - axis.
(6) Curved surface area of sphere $=4 \pi r^{2}$

$$
\begin{aligned}
& =4 \times 3.14 \times 1^{2} \quad(\because r=1 \mathrm{~cm}) \\
& =4 \times 3.14 \times 1 \\
& =4 \times 3.14 \\
& =12.56 \text { sq. } \mathrm{cm}
\end{aligned}
$$

Q. 1 (B)
(1) $2 \cdot \sin 30+3 \cdot \tan 45$
$=2 \times \frac{1}{2}+3 \times 1$
$=1+3$
$=4$
(2) $\mathrm{MB}=\frac{1}{2} \times \mathrm{AB}=\frac{1}{2} \times 12=6 \mathrm{~cm}$ (perpendicular drawn from the centre of the circle to the chord bisects the chord)

$$
\begin{aligned}
\mathrm{OB}^{2} & =\mathrm{OM}^{2}+\mathrm{MB}^{2} \\
& =8^{2}+6^{2} \\
& =64+36=100 \\
\therefore \mathrm{OB} & =10 \mathrm{~cm}
\end{aligned}
$$

(3) In $\triangle P Q R \quad 12 \mathrm{~cm}>10 \mathrm{~cm}>8 \mathrm{~cm}$

$$
\begin{aligned}
& \therefore \mathrm{QR}>\mathrm{PQ}>\mathrm{PR} \\
& \therefore \angle \mathrm{P}>\angle \mathrm{R}>\angle \mathrm{Q}
\end{aligned}
$$

The biggest angle is $\angle \mathrm{P}$ and the smallest angle is $\angle \mathrm{Q}$.
Q 2 (A) (1) A
(2) C
(3) A
(4) B
Q. 2 (B)
(1) $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$

$$
\begin{aligned}
\frac{\mathrm{A}(\triangle \mathrm{ABC})}{\mathrm{A}(\triangle \mathrm{DEF})} & =\frac{\mathrm{AB}^{2}}{\mathrm{DE}^{2}} \\
\frac{1}{2} & =\frac{4^{2}}{\mathrm{DE}^{2}} \\
\frac{1}{2} & =\frac{16}{\mathrm{DE}^{2}} \\
\therefore \mathrm{DE}^{2} & =16 \times 2 \quad \therefore \mathrm{DE}=4 \sqrt{2}
\end{aligned}
$$

(2) Chords EN and FS intersect each other externally.

$$
\begin{align*}
\therefore \angle \mathrm{NMS} & =\frac{1}{2} \times[m(\operatorname{arc} \mathrm{NS})-m(\operatorname{arc} \mathrm{EF})] \\
& =\frac{1}{2} \times(125-37) \\
& =\frac{1}{2} \times 88 \\
& =44^{0} \\
\mathrm{P}(0,6) & \mathrm{Q}(12,20) \tag{3}\\
(3) \quad \downarrow & \downarrow \\
\left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right)
\end{align*}
$$

Let co-ordinates of midpoint be (x, y)

By formula for midpoint.,

$$
\begin{aligned}
x & =\frac{x_{1}+x_{2}}{2} \\
& =\frac{0+12}{2} \\
& =\frac{12}{2} \quad=6
\end{aligned}
$$

$$
\begin{aligned}
y & =\frac{y_{1}+y_{2}}{2} \\
y & =\frac{6+20}{2} \\
& =\frac{26}{2} \\
& =13
\end{aligned}
$$

$\therefore \mathrm{PQ}$ co-ordinates of midpoint of segment PQ are $(6,13)$
Q. 3 (A)
(1) $\mathrm{AB}=\mathrm{BC}$

$$
\begin{align*}
\angle \mathrm{BAC}=\angle \mathrm{BCA} & =45^{\circ} \\
\mathrm{AB}=\mathrm{BC} & =\frac{1}{\sqrt{2}} \times \mathrm{AC} \\
& =\frac{1}{\sqrt{2}} \times \sqrt{8}=\frac{1}{\sqrt{2}} \times \sqrt{4 \times 2} \\
& =\frac{1}{\sqrt{2}} \times 2 \sqrt{2} \\
& =2 \tag{I}
\end{align*}
$$

(2) Proof: $\angle \mathrm{EFG}=\angle \mathrm{FGH}$

Alternate angles
$\angle \mathrm{EFG}=\frac{1}{2}[m(\operatorname{arc} \mathrm{EG})] \ldots \ldots$. (Inscribed angle theorem) (II)
$\angle \mathrm{FGH}=\frac{1}{2}[m(\operatorname{arc} \mathrm{FH})] \ldots \ldots$. (Inscribed angle theorem) (III)
$\therefore m(\operatorname{arc} \mathrm{EG})=m(\operatorname{arc} \mathrm{FH}) \quad$........ \quad [(I), (II), (III)]
\therefore chord $\mathrm{EG} \cong$ chord $\mathrm{FH} . . .$. (corresponding chords of congruent arcs)
(3) Area of square $\mathrm{ABCD}=$ side 2

$$
\begin{aligned}
& =7^{2} \\
& =49 \mathrm{~cm}^{2}
\end{aligned}
$$

Sector

$$
\begin{aligned}
\mathrm{D}-\mathrm{AXC} & =\frac{\theta}{360} \times \pi r^{2} \\
& =\frac{90}{360} \times \frac{22}{7} \times 7^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times 7 \times 7 \\
& =\frac{154}{4} \\
& =38.5 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Area of shaded portion $=49-38.5$

$$
=10.5 \mathrm{~cm}^{2}
$$

Q 3 (B)
(1) $\mathrm{NQ}^{2}=\mathrm{MQ} \times \mathrm{QP} \ldots \ldots \ldots \ldots \ldots$. (Theorem of Geometric mean)

$$
=9 \times 4
$$

$$
=36
$$

$$
\therefore \mathrm{NQ}=6
$$

(2) $\sec \theta+\tan \theta=\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}$

$$
=\frac{1+\sin \theta}{\cos \theta}
$$

$$
=\frac{(1+\sin \theta)(1-\sin \theta)}{\cos \theta(1-\sin \theta)}
$$

$$
=\frac{1^{2}-\sin ^{2} \theta}{\cos \theta(1-\sin \theta)}
$$

$$
=\frac{\cos ^{2} \theta}{\cos \theta(1-\sin \theta)}
$$

$$
\therefore \sec \theta+\tan \theta=\frac{\cos \theta}{1-\sin \theta}
$$

(3) $r_{1}=5 \mathrm{~cm}, r_{2}=2 \mathrm{~cm}, \quad h=9 \mathrm{~cm}$

$$
\begin{aligned}
\text { Area of frustum } & =\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} \times r_{2}\right) \\
& =\frac{1}{3} \times 3.14 \times 9\left(5^{2}+2^{2}+5 \times 2\right) \\
& =3.14 \times 3(25+4+10) \\
& =3.14 \times 3 \times 39 \\
& =367.38 \mathrm{~cm}^{2}
\end{aligned}
$$

Q 4
(1)

Given :In $\triangle \mathrm{ABC}$ line $l \|$ Side BC line l intersects side AB and side AC in P and Q respectively.
To prove : $\frac{A P}{P B}=\frac{A Q}{Q C}$

Construction : Draw seg PC and seg QB.

$$
\begin{aligned}
\text { Proof : } \begin{aligned}
\frac{\mathrm{A}(\triangle \mathrm{APQ})}{\mathrm{A}(\triangle \mathrm{PQB})} & =\frac{\mathrm{AP}}{\mathrm{~PB}} \quad \ldots \ldots . \text { (I) (Areas are in proportion to the bases) } \\
& \frac{\mathrm{A}(\triangle \mathrm{APQ})}{\mathrm{A}(\triangle \mathrm{PQB})}
\end{aligned}=\frac{\mathrm{AQ}}{\mathrm{QC}} \quad \ldots \ldots . \text { (II) (Areas are in proportion to the bases) }
\end{aligned}
$$ $\Delta \mathrm{PQB}$ and $\Delta \mathrm{PQC}$ have the same base PQ and $\mathrm{PQ} \| \mathrm{BC}$, their height is also same.

$$
\begin{aligned}
& \therefore \mathrm{A}(\triangle \mathrm{PQB})=\mathrm{A}(\Delta \mathrm{PQC}) \\
& \therefore \frac{\mathrm{A}(\Delta \mathrm{APQ})}{\mathrm{A}(\Delta \mathrm{PQB})}=\frac{\mathrm{A}(\Delta \mathrm{APQ})}{\mathrm{A}(\triangle \mathrm{PQC})} \ldots \ldots . \text { from ((I), (II) and (III) } \\
& \therefore \frac{\mathrm{AP}}{\mathrm{~PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}} \quad \ldots \ldots . . \text { from (I) }, \text { (II) }
\end{aligned}
$$

(2)

(3) slope of the line $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$P(2,4), Q(3,6)$
slope of the line $\mathrm{PQ}=\frac{6-4}{3-2}=\frac{2}{1}=2$
$\mathrm{R}(3,1), \mathrm{S}(5, k)$
slope of the line $\mathrm{RS}=\frac{k-1}{5-3}=\frac{k-1}{2}$
But line PQ || line RS
\therefore slope of line $\mathrm{PQ}=$ slope of line RS
$\therefore \quad 2=\frac{k-1}{2}$
$\therefore \quad 4=k-1$
$\therefore \quad 4+1=k$
$\therefore \quad k=5$

Let AB be the light house.
The boat is at C and observer is at A .
$\angle \mathrm{MAC}$ is the angle of depression.
$\angle \mathrm{MAC}=\angle \mathrm{ACB}=60^{\circ} \ldots$. .(Alternate angle)
$A B=90 \mathrm{~m}$.

From the figure, $\tan 60^{\circ}=\frac{A B}{B C}$

$$
\begin{aligned}
& \sqrt{3} & =\frac{90}{\mathrm{BC}} \\
& B C & =\frac{90}{\sqrt{3}}=\frac{90 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{90 \sqrt{3}}{3}=30 \sqrt{3} \\
\therefore & B C & =30 \times 1.73 \\
\therefore \quad & B C & =51.90
\end{aligned}
$$

\therefore The boat is at a distance of 51.90 m from the light house.

Q. 5

(1)

Draw Seg PQ.
APQD is a cyclic qudrilateral.
$\angle \mathrm{ADQ}+\angle \mathrm{APQ}=180^{\circ}$
PBCQ is a cyclic qudrilateral.
$\therefore \angle \mathrm{BCQ}+\angle \mathrm{BPQ}=180^{\circ}$
$\therefore \angle \mathrm{ADQ}+\angle \mathrm{APQ}+\angle \mathrm{BCQ}+\angle \mathrm{BPQ}=180^{\circ}+180^{\circ} \ldots$ [from (1),(2)]
$\therefore \angle \mathrm{ADQ}+\angle \mathrm{BCQ}+\angle \mathrm{APQ}+\angle \mathrm{BPQ}=180^{\circ}+180^{\circ}$
But $\angle \mathrm{APQ}+\angle \mathrm{BPQ}=180^{\circ}$
(4) (angles in linear pair)
$\therefore \angle \mathrm{ADQ}+\angle \mathrm{BCQ}+180^{\circ}=180^{\circ}+180^{\circ}$ \qquad [from (3), (4)]
$\therefore \angle \mathrm{ADQ}+\angle \mathrm{BCQ}=180^{\circ}$
$\therefore \angle \mathrm{ADC}+\angle \mathrm{BCD}=180^{\circ}$
(2)

Q. 6

(1) In $\triangle \mathrm{AOB}, \mathrm{OF}$ is bisector of $\angle \mathrm{AOB}$
$\therefore \frac{\mathrm{OA}}{\mathrm{OB}}=\frac{\mathrm{AF}}{\mathrm{BF}}$
$\ldots .$. (1) (by angle bisector theoerm)
In $\Delta \mathrm{BOC}, \mathrm{OD}$ is bisector of angle $\angle \mathrm{BOC}$.
$\therefore \frac{\mathrm{OB}}{\mathrm{OC}}=\frac{\mathrm{BD}}{\mathrm{CD}}$
(2)(by angle bisector theoerm)

In $\triangle \mathrm{AOC}, \mathrm{OE}$ is bisector of angle $\angle \mathrm{AOC}$.
$\therefore \frac{\mathrm{OC}}{\mathrm{OA}}=\frac{\mathrm{CE}}{\mathrm{AE}}$
....... (3)(by angle bisector theoerm)
$\therefore \frac{\mathrm{OA}}{\mathrm{OB}} \times \frac{\mathrm{OB}}{\mathrm{OC}} \times \frac{\mathrm{OC}}{\mathrm{OA}}=\frac{\mathrm{AF}}{\mathrm{BF}} \times \frac{\mathrm{BD}}{\mathrm{CD}} \times \frac{\mathrm{CE}}{\mathrm{AE}} \quad$ from (1), (2) and (3)
$\therefore \frac{\mathrm{OA} \times \mathrm{OC} \times \mathrm{OB}}{\mathrm{OB} \times \mathrm{OA} \times \mathrm{OC}}=\frac{\mathrm{AF} \times \mathrm{CE} \times \mathrm{BD}}{\mathrm{BF} \times \mathrm{AE} \times \mathrm{CD}}$
$\therefore \quad 1=\frac{\mathrm{AF} \times \mathrm{CE} \times \mathrm{BD}}{\mathrm{BF} \times \mathrm{AE} \times \mathrm{CD}}$
$\therefore \mathrm{BF} \times \mathrm{AE} \times \mathrm{CD}=\mathrm{AF} \times \mathrm{CE} \times \mathrm{BD}$
(2) Volume of hemisphere $=\frac{2}{3} \pi R^{3}$ volume of cone $=\frac{1}{3} \pi r^{2} \times h$

By the given condition;

$2 \times$ volume of cone $=$ volume of hemisphere
$\therefore 2 \times \frac{1}{3} \pi r^{2} h=\frac{2}{3} \pi \mathrm{R}^{3}$
$\therefore r^{2} h=\mathrm{R}^{3}$
\therefore if $r=h=\mathrm{R}$.......then both sides will be equal.
\therefore if radius of base of the cone is R and its height is R , which is equal to radius of the bowl, then a cone satisfying the given condition can be made.

Std: $10^{\text {th }}$
Science and Technology: Part I
Marks: 40
Que. 1A)

$$
\text { i. } \quad s=\frac{1}{2} g t^{2} \text {. }
$$

ii. $\mathrm{Li} / \mathrm{Na} / \mathrm{K} / \mathrm{Rb} / \mathrm{Cs} / \mathrm{Fr}$ (any one)

iii. Decrease in temperature
iv. $\mathrm{H}_{2} \mathrm{O}$
v. Bulb A
B)
i. a) $F_{1}=F_{2}$
ii. b) Angle of deviation decreases but after certain value of incident angle, deviation angle increases.
iii. a) single
iv. d) double displacement
v. c) Sunita Williams

Que. 2 (any five)

1. i. Elements in period 3: ${ }_{14} S,{ }_{15} P$
ii. electronic configuration $14 S: 2,8,4$

$$
{ }_{15} P: 2,8,5
$$

2. $\mathrm{v}=1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad, \mathrm{n}=$?

$$
\mathrm{n}=\frac{c}{v}
$$

$$
\mathrm{n}=\frac{3 \times 10^{8}}{1.5 \times 10^{8}}
$$

$$
\mathrm{n}=2
$$

absolute refractive index of the medium is 2 .
3.
 in figure. $\mathrm{PQ} \| \mathrm{SR}$
NM is a refracted ray. $\therefore r=i_{1}$
By the laws of refraction,

$$
\begin{aligned}
& g n_{a}=\frac{\sin i}{\sin r} ; \quad{ }_{a} n_{g}=\frac{\sin i_{1}}{\sin e} \\
& \therefore \quad{ }_{g} n_{a}=\frac{1}{a_{g}} \\
& \therefore \quad \frac{\sin i}{\sin r}=\frac{\sin e}{\sin i_{1}} \quad \ldots . . \\
& \therefore \quad \sin i=\sin e \\
& \therefore \quad \quad i=e
\end{aligned}
$$

4.

5. $\frac{1}{2}$ mark for each

6. i. orbit of geostationary satellite is parallel to the equator.
ii. the time of revolution for the earth around itself and that for geostationary satellite to revolve around the earth being the same iii. these satellites are stationery with reference to the earth they can observer a specific portion of the earth continuously.
iv. therefore, geostationary satellite not useful for studies of polar regions.
7. a) low earth orbits
height above the earth's surface: 180 km to 2000 km
b) Medium earth orbits $\quad \frac{1}{2}$
height above the earth's surface: 2000 km to 35780 km
c) high earth orbits $\quad \frac{1}{2}$
height from the earth's surface $>35780 \mathrm{~km}$ $\frac{1}{2}$

Que. 3 (any five)

1. radius of planet ' A ' $=R_{A}$, radius of planet ' B ' $=R_{B}$

Mass of planet ' A ' $=M_{A}$, mass of planet ' B ' $=M_{B}=$?
From given...

$$
\begin{gathered}
R_{A}=\frac{R_{B}}{2} ; \quad \mathrm{g}_{B}=\frac{1}{2} \mathrm{~g}_{A} \\
\mathrm{~g}=\frac{G M}{R^{2}} ; \therefore \mathrm{g}_{A}=\frac{G M_{A}}{R_{A}^{2}} \quad ; \quad \therefore \mathrm{g}_{B}=\frac{G M_{B}}{R_{B}^{2}} \\
\frac{G M_{B}}{R_{B}^{2}}=\frac{1}{2}\left(\frac{G M_{A}}{R_{A}^{2}}\right) \\
\frac{M_{B}}{R_{B}^{2}}=\frac{1}{2}\left(\frac{G M_{A}}{\left(R_{B}\right)^{2}}\right)
\end{gathered}
$$

2. a) Li
b) first group
c) while going down a group atomic radius goes on increasing. As a result, atomic size increases.
3. a) carbon dioxide
b) lime water turns milky.
c) $\mathrm{CaCO}_{3(s)} \xrightarrow{\Delta} \mathrm{CaO}_{(s)}+\mathrm{CO}_{2} \uparrow$
4. i. This is exothermic process. 1
ii. if we poured conc. sulphuric acid speedily in a water. Water gets evaporated instantaneously and very large amount of heat is liberated which may cause an accident.
iii. to avoid this, and only small amount of heat is liberated at a time it added slowly to water with constant stirring
5. i. butane 1
ii. propanoic acid 1
iii. butan-2-one
6. during heating ice the change in temperature with time is shown in the graph

Seg AB: Seg AB represents conversion of ice in to water at constant temperature. During melting of ice at $0^{\circ} \mathrm{C}$, ice absorb heat energy and this continues till all the ice converts into water.

Seg BC: once all ice is transformed into water, temperature of water starts rising it increases up to $100^{\circ} \mathrm{C}$. Seg BC represents rise in temperature of water from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.

Seg CD: even though the heat energy is supplied to the water after $100^{\circ} \mathrm{C}$ its temperature does not rise. The heat energy absorbed by water is used to break the bonds between molecules of the liquid to convert it into gaseous state.
7. a) Myopia or Nearsightedness
b) Possible reasons of defect
i. The curvature of the cornea and the eye lens increases. The muscles near the lens cannot relax so that the converging power of the lens remains large.
ii. The eyeball elongates so that the distance between the lens and the retina increases.
c) correction of defect: this defect can be corrected using spectacles with concave lens. This lens diverges the incident rays and these diverged rays can be converged by the lens in the eye to form image on the retina.

Que. 4 (any One)

1. a. Fleming's left hand rule
b. Electric motor
c.

pleted, the current flows through the coil in the direction $\mathrm{A}-\mathrm{B}-\mathrm{C}-\mathrm{D}$.
ii. The coil is in the magnetic field therefor according to

Fleming's left hand rule force exerted on the $A B$ branch is in downward direction and on the CD branch it is in upward direction.
iii. After half rotation current in the coil start flowing through
$\mathrm{D}-\mathrm{C}-\mathrm{B}-\mathrm{A}$ direction.
iv. therefore, on DC branch force is in downward direction and BA branch it is in upward direction so its complete remaining half rotation.

In this way after every half rotation the direction of the current in the coil changes and coil continue to rotate.
2. a. corrosion: Corrosion is a process where the water or the moisture on the surface of the metal oxidizes with the atmospheric oxygen.
b. Methods of prevention (any two each carry $1 / 2$ mark)

1. Galvanizing 2. Anodization 3. Tinning
2. Electroplating 5. Alloying
c. Anodization
d. In this process cupper, aluminum

2
are coated with a thin layer of their oxides by means of electrolysis. For this copper or aluminum article is us

as anode. It obstructs the contact of the
aluminum or copper with oxygen and water.

